Report on

CSFW-FCC-ICALP

T. Araragi (NTT CS labs) 櫟 紳之 (NTT)
M. Hagiya (Tokyo University) 萩谷 昌己 (東京大学)
CSFW-FCC-ICALP

2006 July: Italy - Venice - S. Servolo Island
- CSFW: 5-7 July
- FCC: 9 July
- ICALP: 10-14 July

S. Servolo Island
General of FCC

- FCC(2nd): 1st: all accepted, 2nd: 10/13 accepted

- 5 minutes talk (12 talks: advertisement, ongoing)

- panel discussion on “non-determinism”:
 Canetti, Micciancio, Mitchell, Pfitzmann, Palamidessi*, Segala*
 (*prob. concurrent system)

next meeting
- CSFW: same place, same time
- FCC: ? join with ICALP/CSFW
- ICALP: Poland
(1) **Computationally Sound Secrecy Proofs by Mechanized Flow Analysis.**
 Backes, Laud.

(2) **Computationally Sound Compositional Logic for Security Protocols.**
 Datta, Derek, Mitchell, Roy, Shmatikov, Turuani, Warinschi

(3) **Language Design for Computationally Sound Communications Abstractions.**
 Adao, Fournet.

(4) **Soundness of Symbolic Equivalence for Modular Exponentiation.**
 Lakhnech, Mazare, Warinschi.

(5) **Sound and Complete Computational Interpretation of Symbolic Hashes in the Standard Model.**
 Garcia, van Rossum.

(6) **Soundness Limits of Dolev-Yao Models.**
 Backes, Pfitzmann, Waidner.

(7) **Using Task-Structured Probabilistic I/O Automata to Analyze Cryptographic Protocols.**
 Canetti, Cheung, Kaynar, Liskov, Lynch, Pereira, Segala.

(8) **Games and the Impossibility of Realizable Ideal Functionality.**
 Backes, Datta, Derek, Mitchell, Ramanathan, Scedrov.

(9) **An example of proving UC-realization with formal methods.**
 Andova, Gjøsteen, Kråkmo, Mjølsnes, Radomirović.
(1) Computationally Sound Secrecy Proofs by Mechanized Flow Analysis.
Backes, Laud.

- tool based on BPW
- transform a protocol to a set of constraint
- abstract analysis deduce cryptographic secrecy?

related papers
Backes-ERORICS-2004, Backes-Pfitzmann-FST-TCS-2003
the state of art of protocol composition logic by Mitchell et al

- history
- DH predicate and axioms for key exchange
- application: ISO-9798-3 key exchange
 Kerberos V5
(3) Language Design for Computationally Sound Communications Abstractions. Adao, Fournet.

- a language based on process algebra
- no cryptographic primitive (as spi-cal)
 (abstract secure primitives on security, authentication)

presented in ICALP 2006

complicated (by Mitchell)
Soundness of Symbolic Equivalence for Modular Exponentiation.

Lakhnech, Mazare, Warinschi.

Extension of Abadi-Rogaway logic
\((m \equiv n \text{ in } \text{DY} \rightarrow \text{IND of } m \text{ and } n : \text{encryption scheme: type0})\)

\(\downarrow\)

\((\ldots : \text{encryption scheme: IND-CPA exponentiation: DDDH})\)

- DynamicDDH: (1) \(\exp(x_1x_2-x_2x_3)\) (2) (3) neg dist from random
- slight modification of DY model
 - adv’s knowledge
 - pattern
 - renaming (linear dep pres bij)

application: Burmester-Desmedt protocol
related work: D. Boneh?
Extension of Abadi-Rogaway logic
\(m \cong n \) in DY -> IND of m and n : encryption scheme: type0

\[\downarrow \]

(... : encryption scheme: type
hash: Canetti’s oracle hash)

- Canetti’s oracle hash
 \[(1) \ P[D_\eta (H(1^n, x)=1)] - \ P[D_\eta (H(1^n, y)=1)] < \frac{1}{p(\eta)} \]
 (2) collision resistance

- slight modification of DY model
 - pattern

- sound & complete
(1) protocols with hash prevent sound DY-model in BPW (otherwise DY-model reverses hash)

(2) protocols with XOR prevent sound DY-model in BPW (otherwise DY-model realizes signature creation/verif)
 - restrict protocols allows sound DY-model

Related papers:
(1) “Limits of the Cryptographic Realization of Dolev-Yao-style XOR”
 Backes, Pfitzmann (2005)
(2) “Limits of the Reactive Simulatability/UC of Dolev-Yao Models with Hashes”
 Backes, Pfitzmann, Waidner (2006)
extension of I/O Automata
- execution -> probabilistic execution [task scheduler]
- time bound (polynomial)

- prob. ver. of implementation (trace inclusion)
- prob. ver of simulation relation

accurate formalization of
IND between real and ideal in UC framework

Shoup’s sequence of games
question: game description => real-ideal description
answer: generally negative

examples:
- multiparty coin-tossing
- bit-commitment (explained)
- shared random sequences

proof:
- create a game using ideal functionality.
- ideal realization -> information theoretic contradiction
 the game
Proving universally composable theorem of (F_{PKI}, F_{SC})-hybrid system for F_{SM} by formal method

similar approach with Mitchell et al?
many talks on foundation of access control/ authorization /policy

(1) Cryptographically Sound Theorem Proving: Mukhamedov, Ryan
- flaw against verified protocol
- manual proof -> fix and model check -> flaw in umbd num of participants

(2) Refuting Claimed Security Proofs for Tripartite Key Exchange with Model Checker: Choo
- finding new flaws
- tools based on AI planning system

(3) Cryptographically Sound Theorem Proving: Sprenger, Basin, BPW
- verification tool for BPW
- transform BPW representation for Isabelle